a2 United States Patent

Kamiko et al.

US009146865B2

US 9,146,865 B2
Sep. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54) OPERATING A DUAL-PORTED INTERNAL

MEMORY
(75) Inventors: Taro Kamiko, Singapore (SG); Yao
Chye Lee, Singapore (SG); Ganesha
Nayak, Singapore (SG); Jin Sze Sow,
Singapore (SG)
(73) Assignee: Lantiq Beteiligungs-GmbH & Co.KG,
Neubiberg (DE)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1408 days.
(21) Appl. No.: 11/814,914
(22) PCT Filed: Jan. 26, 2005
(86) PCT No.: PCT/SG2005/000020
§371 (),
(2), (4) Date: Jul. 26, 2007
(87) PCT Pub. No.: 'W02006/080897
PCT Pub. Date: Aug. 3, 2006
(65) Prior Publication Data
US 2009/0043972 Al Feb. 12, 2009
(51) Imt.ClL
GO6F 12/00 (2006.01)
GO6F 12/06 (2006.01)
GO6F 12/08 (2006.01)
(52) US.CL
CPC GO6F 12/0623 (2013.01); GO6F 12/08
(2013.01); GO6F 2212/251 (2013.01); GO6F
2212/253 (2013.01)
(58) Field of Classification Search

None
See application file for complete search history.

101

(56) References Cited
U.S. PATENT DOCUMENTS
4,713,759 A 12/1987 Yamagishi et al.
5,752,261 A 5/1998 Cochcroft, Jr.
5,895,469 A * 4/1999 Lahtietal.occoceenrnns 710/52
6,184,904 B1* 2/2001 Trummer et al. 345/520
6,247,042 Bl 6/2001 Engstrom et al.
6,377,979 B1* 4/2002 Yamashita et al. 709/213
6,393,525 B1* 5/2002 Wilkerson et al. 711/136
2003/0005212 Al 1/2003 Cocca
2006/0075394 Al 4/2006 Iwamoto
2009/0240847 Al 9/2009 Hu
2009/0300366 Al 12/2009 Gueller et al.

FOREIGN PATENT DOCUMENTS

0841619 A2 5/1998
OTHER PUBLICATIONS

EP

“Page Allocation Control,” IBM Technical Disclosure Bulletin, Jan.
1990, pp. 334-337, vol. 32, No. 8A.

* cited by examiner
Primary Examiner — Kevin Verbrugge

(57) ABSTRACT

There is provided a method for updating an internal memory
on a semiconductor device from an external memory. The
external memory is arranged in a plurality of data portions.
The method comprises the steps of writing a first data portion
from the external memory to the internal memory, processing
the first data portion and, while the first data portion is being
processed, once a selected data item is processed, starting to
write a second data portion from the external memory to the
internal memory. The method may be applied to the process-
ing of software by an embedded processor on a semiconduc-
tor device. There is also provided a semiconductor device and
a hardware module for the semiconductor device.

3 Claims, 1 Drawing Sheet

OxFF

0x0000 to
OxQ0FF

0x0100 fo
<

CONTROL

-
-
—

A

Ox01FF

READ DATA
»
103 105
< 105
ADDRESS/
y CONTROL
NEW
DATA
A
B
CONTROL
109 107
»
>

0x0200 to
Ox02FF

READ DATA

0x0300 to
Ox03FF

0x0400 to
Ox04FF

i
OxFFO0to |/
/

OXFFFF

US 9,146,865 B2

Sep. 29, 2015

U.S. Patent

s

v.Lva avay
<
E N i
1] JOYLINOD oot - V
d //////
v <1 44%0
M3aN - "
IOH1INQD \
/Ss3™aay
>
Gol wo

)
viva avay

~——
~—.
-

00%0 /////////

101

d444%0
0} 0044%0

44¥0%x0
01 00¥0%0

44€0%0
0} 00E0X0

4420%0
0} 00Z0%0

4410%0
0} 0010X0

4400%0

01 0000X0

AN

US 9,146,865 B2

1
OPERATING A DUAL-PORTED INTERNAL
MEMORY

FIELD OF THE INVENTION

The invention relates to updating semiconductor device
internal memory from external memory. Particularly, but not
exclusively, the invention relates to updating semiconductor
device internal memory with software from an external
memory for an embedded processor to read the software from
the internal memory.

BACKGROUND OF THE INVENTION

Embedded processors within a semiconductor device
require software which may be read from an internal or an
external memory.

Internal memory is advantageous because it can be
accessed more quickly than external memory, as it can be
directly connected to the processor bus. Thus, internal
memory should be used when fast access speed is required.
However, the larger the internal memory, the larger the size of
the silicon chip which, of course, affects manufacturing costs.
So, in practice, the internal memory size must be kept small,
even though this limits the features which can be imple-
mented in the internal memory software. That is, a compro-
mise has to be found between fast access and small chip size.

For external memory, on the other hand, the size of the
memory has no affect on silicon chip size. However, an exter-
nal memory requires more cycles in order to be accessed
through internal bus bridges, a memory controller, an external
system bus and so on. Thus, external memory can be used
when the software is too big for internal memory and/or when
particularly fast access is not required.

To partially solve the problems associated with using an
external memory, processor cache memory has been intro-
duced. A cache memory provides fast access for data which is
frequently accessed, whilst reserving the less frequently
accessed data in the external memory. The disadvantage of
cache memory, however, is that the cache memory will only
be updated when a cache miss happens i.e. when a read
request cannot be satisfied by the cache memory but requires
the external memory. This updating process takes extra
cycles.

SUMMARY OF THE INVENTION

In a preferred embodiment of the invention, a method for
updating an internal memory on a semiconductor device from
an external memory, which mitigates or substantially over-
comes the problems of prior art methods described above is
provided. In a further embodiment of the invention, hardware
is provided for updating an internal memory on a semicon-
ductor device from an external memory.

In general terms, the invention provides that data from an
external memory be written to an internal memory in seg-
ments or modules. The processor reads the data in the first
module and, when the processor reaches a selected data item
in the module, a memory controller is instructed to start to
load the next module of data from the external memory to the
internal memory. Thus, the internal memory is updated
dynamically as required.

According to a first aspect of the invention, there is pro-
vided a method for updating an internal memory on a semi-
conductor device from an external memory, data in the exter-
nal memory being arranged for flow in a plurality of data
portions, the method comprising the steps of:

10

15

20

25

30

35

40

45

50

55

60

65

2

writing a first data portion from the external memory to the

internal memory;

processing the first data portion; and

while the first data portion is being processed, once a

selected data item is processed, starting to write a second
data portion from the external memory to the internal
memory.

The invention makes use of both internal memory and
external memory. The internal memory is constantly updated
from the external memory as the data in the internal memory
is processed. This is achieved by arranging the data in the
external memory in a plurality of data portions which may be
loaded into the internal memory individually. As one data
portion is processed, the next data portion can be loaded at an
appropriate stage determined by the selected data item. The
updating of the internal memory occurs at the same time as
the processing of the data in the internal memory so that
processing is not interrupted.

In one embodiment, the method further comprises the step
of, while the first data portion is being processed, monitoring
the processing for the selected data item. Monitoring the
processing ensures that the second data portion is loaded to
the internal memory at an appropriate stage.

In that embodiment, the step of monitoring the processing
for the selected data item may comprise a hardware module
monitoring the processing for the selected data item. The
hardware module may be arranged to instruct the start of the
writing of the second data portion once the selected piece of
data is processed.

The step of writing a first data portion from the external
memory to the internal memory is preferably performed by a
memory controller. In order to write the first data portion from
the external memory to the internal memory, the memory
controller is preferably arranged to read data from the exter-
nal memory and to write data to the internal memory.

The step of starting to write a second data portion from the
external memory to the internal memory is preferably per-
formed by a memory controller. In order to write the second
data portion from the external memory to the internal
memory, the memory controller may be arranged to read data
from the external memory and to write data to the internal
memory.

The memory controller may be on the semiconductor
device. The hardware module may be on the semiconductor
device.

In an embodiment where the method comprises the step of
monitoring the processing and the monitoring is performed
by ahardware module, the hardware module may be arranged
to instruct the memory controller to start to write the second
portion of data to the internal memory, once the selected data
item is processed.

The step of processing the first data portion is preferably
performed by a processor. The processor may be on the semi-
conductor device.

In one preferred embodiment, each data portion in the
external memory is substantially the same size as the internal
memory. Thus, the entire data portion in the external memory
can be written to the internal memory in one go (but not
necessarily in a single clock cycle).

Each data portion in the external memory may be defined
by a set of external data addresses. Data in the internal
memory may be defined by a set of internal data addresses.
Preferably the total range of external data addresses is larger
than the range of internal data addresses.

Each set of external data addresses (that is, the external data
address range of each data portion) is preferably substantially
the same size as the set of internal data addresses.

US 9,146,865 B2

3

In that case, each external data address may be defined by
x bits and each internal data address may be defined by (x-y)
bits. x and y are positive integers so that each internal data
address is defined by fewer bits than each external data
address.

In that case, the step of writing a first data portion from the
external memory to the internal memory may include dis-
carding y bits of the data address. Thus, no reassigning of
addresses between the external memory and the internal
memory is required. This is done automatically by discarding
the excess y bits.

Also in that case, the step of processing the first data
portion may comprise the steps of: a processor trying to read,
for each data item in the first data portion, an address defined
by x bits; converting the address defined by x bits to an
internal memory address defined by (x-y) bits, by discarding
the y most significant bits of the data address; and the proces-
sor reading, for each data item in the first data portion, the
internal memory address defined by (x-y) bits. Thus, no reas-
signing of addresses is required in order for the processor to
be able to read the correct address, even though the processor
has an instruction fetch to read an x-bit address, but the
internal memory only has (x-y)-bit addresses. The step of
converting preferably takes place in the internal memory, the
internal memory automatically discarding y bits because the
number of bits defining the address which the processor is
trying to read is too large.

In one embodiment, the data in the external memory is
defined by external data addresses from 0X0000 to OXFFFF
(i.e. x=16) and the data portions in the external memory are
defined by the following sets of external data addresses:
0X0000 to 0X00FF, 0X0100 to 0X01FF, 0X0200 to 0X02FF
and so on. In that embodiment, the data in the internal
memory is defined by internal data addresses from 0X00 to
OXFF (i.e. x-y=8). Thus, each data portion in the external
memory is the same size as the internal memory.

Preferably, every data portion in the external memory, irre-
spective of its external data address set, is mapped to one set
of internal data addresses in the internal memory. Thus, to
convert from the data portion’s external memory address to
the internal memory address, some of the bits defining the
address can simply be discarded. In that way, when each data
portion is written from the external memory to the internal
memory, no compiler effort is required in order to reassign
addresses.

The selected data item is preferably defined by one or more
of the internal data addresses in the set. The one or more
internal data addresses defining the selected data item will be
equivalent to one or more external data addresses in the set of
external data addresses for that data portion. The one or more
internal data addresses defining the selected data item may be
set by a user. The one or more of the internal data addresses
defining the selected data item may be termed a threshold
address. The threshold address may be the same for all the
data portions or the threshold address may be different for
different data portions.

In one embodiment of the invention, the first and second
data portions are defined by a respective set of external data
addresses, the second set of external data addresses following
sequentially the first set of external data addresses.

In another embodiment of the invention, the first and sec-
ond data portions are defined by a respective set of external
data addresses, the second set of external data addresses not
following sequentially the first set of external data addresses.
In this embodiment, the first data portion may include data on
the external data address set of the second data portion. Where
a memory controller is provided to write the data portions

10

15

20

25

30

35

40

45

50

55

60

65

4

from the external memory to the internal memory, the
memory controller may be instructed to load the second data
portion, as defined by the second set of external data
addresses, once the selected data item is processed.

The method may further comprise the steps of:

completing writing the second data portion from the exter-

nal memory to the internal memory;

processing the second data portion; and

while the second data portion is being processed, once a

second selected data item is processed, starting to write
a third data portion from the external memory to the
internal memory.

The method may additionally comprise the step of, while
the second data portion is being processed, monitoring the
processing for the second selected data item. The step of
monitoring the processing for the second selected data item
may comprise the hardware module monitoring the process-
ing for the second selected data item. The step of processing
the second data portion may comprise the processor process-
ing the second data portion.

The steps of the method of the invention as described above
may be repeated until all data portions in the external memory
have been written to the internal memory. That is, the first data
portion is written to the internal memory and processed, the
second data portion is written to the internal memory and
processed, the third data portion is written to the internal
memory and processed and so on until the nth data portion has
been processed. The method may be repeated from the first
data portion once all the data portions have been written to the
internal memory. Or, the method may be repeated from the
first data portion before all the data portions have been written
to the internal memory.

The method may be advantageously applied to the process-
ing of software by an embedded processor on a semiconduc-
tor device, for example, a silicon chip.

According to the first aspect of the invention, there is also
provided a method for updating an internal memory on a
semiconductor device with software from an external
memory, the software in the external memory being arranged
to be loaded into the internal memory in a plurality of soft-
ware portions, the method comprising the steps of:

writing a first software portion from the external memory

to the internal memory, the first software portion being
defined in the external memory by a first set of external
memory addresses and, once written to the internal
memory, being defined in the internal memory by a set of
internal memory addresses;

processing the first software portion; and

while the first software portion is being processed, once a

selected software address is processed, starting to write
a second software portion from the external memory to
the internal memory, the second software portion being
defined in the external memory by a second set of exter-
nal memory addresses and, once written to the internal
memory, being defined in the internal memory by the set
of internal memory addresses.

According to a second aspect of the invention, there is
provided a semiconductor device for operation with an exter-
nal memory, data in the external memory being arranged for
flow in a plurality of data portions, the semiconductor device
comprising:

an internal memory for storing a data portion;

a memory controller for writing data from the external

memory to the internal memory;

a processor for processing the data portion in the internal

memory; and

US 9,146,865 B2

5

ahardware module arranged, once a selected data item in a
first data portion is processed, to instruct the memory
controller to write a second data portion from the exter-
nal memory to the internal memory.

The invention makes use of both internal memory and
external memory. The internal memory on the semiconductor
device is constantly updated from the external memory as the
data in the internal memory is processed. This is achieved by
arranging the data in the external memory in a plurality of
data portions which may be loaded into the internal memory
individually. As one data portion is processed, the next data
portion can be loaded at an appropriate stage determined by
the selected data item. The internal memory is preferably a
dual port memory so that the updating of the internal memory
can occur at the same time as the processing of the data in the
internal memory so that processing is not interrupted. The
arrangement allows the internal memory on the semiconduc-
tor device to be kept small thereby preventing an increase in
manufacturing costs.

Preferably, the hardware module is arranged to monitor the
processing for the selected data item. Monitoring the process-
ing ensures that the second data portion is loaded to the
internal memory at an appropriate stage.

The memory controller is preferably arranged to read data
from the external memory and to write data to the internal
memory, in order to write the data portions from the external
memory to the internal memory.

In one preferred embodiment, each data portion in the
external memory is substantially the same size as the internal
memory. Thus, an entire data portion in the external memory
can be written to the internal memory in one go.

Preferably, each data portion in the external memory is
defined by a set of external data addresses. Preferably, data in
the internal memory is defined by a set of internal data
addresses. Preferably the total range of external data
addresses is larger than the range of internal data addresses.

The set of external data addresses is preferably substan-
tially the same size as the set of internal data addresses.

In that case, each external data address may be defined by
x bits and each internal data address may be defined by (x-y)
bits.

In that case, the memory controller may be arranged to
discard y bits of the data address when writing data from the
external memory to the internal memory. Thus, the external
data address is automatically converted to an internal data
address by discarding the appropriate number of bits.

In that case, the processor may be arranged, when process-
ing the data portion in the internal memory, to try to read, for
each data item in the first data portion, an address defined by
x bits, and the internal memory may be arranged to convert the
address defined by x bits to an internal memory address
defined by (x-y) bits, by discarding the y most significant bits
of'the data address. Thus, although the processor tries to read
an x-bit address (i.e. the instruction fetch is effectively for an
external memory address), the internal memory discards the
appropriate number of bits so that the address is converted to
an internal memory address for the processor to read and no
separate address reassignment is required.

In one embodiment, the data in the external memory is
defined by external data addresses from 0X0000 to OXFFFF
and the data portions in the external memory are defined by
the following sets of external data addresses: 0X0000 to
0XO0O0FF, 0X0100 to 0X01FF, 0X0200 to 0X02FF and so on.
Inthatembodiment, the data in the internal memory is defined
by internal data addresses from 0X00 to OXFF. Thus, each
data portion in the external memory is the same size as the
internal memory.

10

15

20

25

30

35

40

45

50

55

60

65

6

Preferably, every data portion in the external memory, irre-
spective of its external data address set, is mapped to a single
set of internal data addresses in the internal memory. Thus, to
convert from the data portion’s external memory address to
the internal memory address, some of the bits defining the
address can simply be discarded. When each data portion is
written from the external memory to the internal memory, no
compiler effort is required in order to reassign addresses.

The selected data item is preferably defined by one or more
of the internal data addresses in the set. The one or more
internal data addresses defining the selected data item may be
settable by a user.

The one or more of the internal data addresses defining the
selected data item may be termed a threshold address. The
threshold address may be the same for all the data portions or
the threshold address may be different for different data por-
tions.

In one embodiment, the first and second data portions are
defined by a respective set of external data addresses, the
second set of external data addresses following sequentially
the first set of external data addresses.

In another embodiment, the first and second data portions
are defined by a respective set of external data addresses, the
second set of external data addresses not following sequen-
tially the first set of external data addresses. In the case where
the second set of external data addresses does not follow
sequentially from the first set of external data addresses, the
processor may be arranged, as it processes the first data por-
tion, to supply information to the hardware module regarding
the second set of external data addresses. Then, once the
selected data item is processed, the hardware module may
instruct the memory controller to load the second data por-
tion, as defined by the second set of external data addresses.

According to the second aspect of the invention, there is
also provided a semiconductor device for operation with an
external memory, software in the external memory being
arranged to be loaded into the internal memory in a plurality
of software portions, each software portion in the external
memory being defined by a respective set of external memory
addresses, the semiconductor device comprising:

an internal memory for storing a software portion, the

software portion being defined by a set of internal
memory addresses;

a memory controller for writing software from the external

memory to the internal memory;

a processor for processing the software portion in the inter-

nal memory; and

a hardware module arranged, once a selected software

address in a first software portion is processed, to
instruct the memory controller to write a second soft-
ware portion from the external memory to the internal
memory.

According to a third aspect of the invention, there is pro-
vided a hardware module for a semiconductor device, the
semiconductor device being arranged for operation with an
external memory, data in the external memory being arranged
for flow in a plurality of data portions,

the semiconductor device comprising an internal memory

for storing a data portion, a memory controller for writ-
ing data from the external memory to the internal
memory and a processor for processing the data portion
in the internal memory; and

the hardware module being arranged, once a selected data

item in a first data portion is processed, to instruct the
memory controller to write a second data portion from
the external memory to the internal memory.

US 9,146,865 B2

7

Preferably, each data portion in the external memory is
defined by a set of external data addresses. Preferably, data in
the internal memory is defined by a set of internal data
addresses. Preferably the total range of external data
addresses is larger than the range of internal data addresses.

Each set of external data addresses is preferably substan-
tially the same size as the set of internal data addresses. In that
case, each external data address may be defined by x bits and
each internal data address may be defined by (x-y) bits.

In that case, the memory controller may be arranged to
discard y bits of the data address when writing data from the
external memory to the internal memory.

In that case, the processor may be arranged, when process-
ing the data portion in the internal memory, to try to read, for
each data item in the first data portion, an address defined by
x bits, and the internal memory may be arranged to convert the
address defined by x bits to an internal memory address
defined by (x-y) bits, by discarding the y most significant bits
of the data address.

In one embodiment, the data in the external memory is
defined by external data addresses from 0X0000 to OXFFFF
and the data portions in the external memory are defined by
the following sets of external data addresses: 0X0000 to
0XO0O0FF, 0X0100 to 0X01FF, 0X0200 to 0X02FF and so on.
Inthatembodiment, the data in the internal memory is defined
by internal data addresses from 0X00 to OXFF. Thus, each
data portion in the external memory is the same size as the
internal memory.

Preferably, every data portion in the external memory, irre-
spective of its external data address set, is mapped to a single
set of internal data addresses in the internal memory. Thus, to
convert from the data portion’s external memory address to
the internal memory address, some of the bits defining the
address can simply be discarded. When each data portion is
written from the external memory to the internal memory, no
compiler effort is required in order to reassign addresses.

Advantageously, the selected data item is defined by one or
more of the internal data addresses in the set. The hardware
module is preferably arranged to monitor the instruction fetch
address, that is the address in the internal memory currently
being read by the processor. Once the one or more of the
internal data addresses defining the selected data item
matches the instruction fetch address, the hardware module
can instruct the memory controller to load the next data por-
tion to the internal memory.

The one or more internal data addresses defining the
selected data item may be settable by a user.

The one or more of the internal data addresses defining the
selected data item may be termed a threshold address. The
threshold address may be the same for all the data portions or
the threshold address may be different for different data por-
tions.

In one embodiment, the first and second data portions are
defined by a respective set of external data addresses, the
second set of external data addresses following sequentially
the first set of external data addresses. In that embodiment,
where the second set of external data addresses follows
sequentially from the first set of external data addresses, the
hardware module can instruct the memory controller to write
the next data portion to the internal memory.

In another embodiment, the first and second data portions
are defined by a respective set of external data addresses, the
second set of external data addresses not following sequen-
tially the first set of external data addresses. In that embodi-
ment, where the second set of external data addresses does not
follow sequentially from the first set of external data
addresses, the processor may be arranged, as it processes the

10

15

20

25

30

35

40

45

55

60

65

8

first data portion, to supply information to the hardware mod-
ule regarding the second set of external data addresses. Then,
once the selected data item is processed, the hardware module
may instruct the memory controller to load the second data
portion, as defined by the second set of external data
addresses.

According to the third aspect of the invention, there is also
provided a hardware module for a semiconductor device, the
semiconductor device being arranged for operation with an
external memory, software in the external memory being
arranged to be loaded into the internal memory in a plurality
of software portions each software portion in the external
memory being defined by a respective set of external memory
addresses,

the semiconductor device comprising an internal memory

for storing a software portion, the software portion being
defined by a set of internal memory addresses, a memory
controller for writing data from the external memory to
the internal memory and a processor for processing the
software portion in the internal memory; and
the hardware module being arranged, once a selected soft-
ware address in a first software portion is processed, to
instruct the memory controller to write a second software
portion from the external memory to the internal memory.

Any features described in relation to one aspect of the
invention may also be applicable to another aspect of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

An exemplary embodiment of the invention will now be
described with reference to accompanying FIG. 1 which is a
schematic diagram of a semiconductor device according to an
embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

FIG. 1 shows a silicon chip 101 according to an embodi-
ment of the invention. Chip 101 includes an internal memory
103, a processor 105, a hardware module in the form of a
memory address monitor 107 and an external memory con-
troller 109. The external memory controller 109 has access to
an external memory 111.

The addresses in the external memory are shown schemati-
cally at A and the addresses in the internal memory are shown
schematically at B. As can be seen at A, in this embodiment,
the external memory software addresses run from 0X0000 to
OXFFFF (hexadecimal) and are segmented into addresses
running from 0X0000 to 0XOOFF, 0X0100 to 0X01 FF,
0X0200 to OXO02FF, etc. As can be seen at B, the internal
memory software addresses run from 0X00 to OXFF only.
That is, the external memory software addresses are defined
by a 16 bit address whereas the internal memory software
addresses are defined by an 8 bit address.

In general terms, operation of the arrangement of FIG. 1 is
as follows. After power up, the external memory controller
109 loads the first segment of software from the external
memory 111 into the internal memory 103. The processor 105
starts running and starts to process the first segment of soft-
ware from the internal memory 103. The memory address
monitor 107 monitors the software address which is currently
being processed (i.e. the instruction fetch address) and, once
the processor reaches a selected threshold, the indication is
given from the memory address monitor 107 to the external
memory controller 109 to load the second segment of the
software from the external memory 111 to the internal

US 9,146,865 B2

9

memory 103. At that stage, the processor can start to process
the second segment of software from the internal memory.
Thus, the processing continues through the third, fourth nth
segments, the segments being loaded into the internal
memory 103 one at a time on instruction of the memory
address monitor 107.

Now consider the software addresses in the internal and
external memories in more detail. As already described, the
external memory 111 is divided into segments, the segments
being decided by the memory address monitor 107. The
addresses in the external memory run from 0XO0000 to
OXFFFF and are segmented into addresses running from
0X0000 to O0XOOFF, 0X0100 to 0X01 FF1 0X0200 to
0XO02FF and so on, i.e., 16 bit addresses. The addresses in the
internal memory run from 0X00 to OXFF only, i.e., 8 bit
addresses. Thus, the actual software addresses run from
0X0000 to OXFFFF and are segmented into modules such
that the modules in the external memory 111 are each the
same size as the internal memory 103. There may be any
number of segments in the external memory 111.

When the first segment from the external memory 111
(0X0000 to OXOOFF) is loaded into the internal memory
103, its addresses in the internal memory 103 become 0X00
to OXFF. Similarly, when the second segment from the exter-
nal memory 111 (0X0100 to 0X01 FF) is loaded into the
internal memory 103, its addresses in the internal memory
103 become 0X00 to OXFF. This is the same for the remain-
ing segments, as is shown below:

Software Actual software address map Segmented soft-
ware address segment (i.e. in external memory 111) map (i.e.
in internal memory 103)

1 0X0000 to 0X00FF 0X00 TO 0XFF
2 0X0100 to 0XO1FF 0X00 TO 0XFF
3 0X0200 to 0X02FF 0X00 TO 0XFF
4 0X0300 to 0XO03FF 0X00 TO 0XFF
256 O0XFF00 to OXFFFF 0X00 TO 0XFF

Now, the software and processor 105 still use a 16 bit
address line even when the segment is loaded into the internal
memory 103, but the internal memory 103 uses only an 8 bit
address line, so there is a mismatch. If we assume that the
address boundaries for segmentation in the external memory
are properly chosen to match the internal memory size
exactly, this mismatch can be easily dealt with.

For example, if the processor 105 tries an instruction fetch
onaddress 0X41 AB (16 bit), the processor 105 issues address
0X41AB on its address bus and this address line goes to the
internal memory 103. In the internal memory 103, this
address line is reduced to 8 bits i.e. the values of bits 8, 9, 10,
11, 12, 13, 14, 15 are discarded. This is because no physical
hardware address line for bits 8, 9, 10, 11, 12, 13, 14, 15 are
implemented in the internal memory 103. So, the internal
memory 103 will return read data for address OXAB (8 bit),
but this is exactly the address the processor 105 required for
its instruction fetch, in any case. So, the processor 105 can
process the data as if it were address 0X41 AB and does not
need to know about the bit reduction in the internal memory
103. So, as long as the segment size in the external memory
111 matches the internal memory size and the processor 105
supports an address range required by the original software
before segmentation, this will work. Of course, this is only an
example. The external memory addresses could be 12 bit and
the internal memory addresses could be 8 bit, or the external
memory addresses could be 16 bit and the internal memory

10

15

20

25

30

35

40

45

50

55

60

10

addresses could be 12 bit (in which case the internal memory
103 would discard 4 bits) or any other suitable arrangement.

Thus, the memory segment size in the external memory
111 should fit into a neat address boundary so that the physi-
cal memory address used in a memory segment (the external
memory address for the segment) always matches the offset
address stored in the compiled object code (the segmented
software address in the internal memory). Or, putting it
another way, the segmented mapping in the internal memory
address is the same for each segment of the external memory
111. Therefore the user should set the start address of each
external memory software segment to the first address in the
internal memory segment. Also, the user should limit the size
of each software module to be the same size or smaller than
the internal memory segment. In that way, no compiler effort
is required in order to reassign addresses between the external
and internal memories.

If one software block size (i.e. external memory address
range) is less than the internal memory size, dummy code
needs to be added at the end of the block so that the segment
size matches the internal memory address size. This is done
before software compilation to ensure that the first data item
in the next segment sits on the correct segmentation boundary
after software compilation.

Preferably, the internal memory size is the full range of one
of' 2 bit values, for example 0X00 to OXFF, 0X000 to 0X1 FF
or 0X0000 to OX7FFF. If the internal memory size is not the
full range, for example, 0X00 to OXFC, this is still workable
as long as the segmentation range in the external memory 111
is kept to 0X00 to OXFF, with OXFD to OXFF remaining
unused (i.e. dummy).

As already mentioned, the memory address monitor 107
detects when the internal memory segment can be replaced
with a new program and, when this is the case, gives an
indication to the external memory controller 109 to update the
internal memory 103. Thus, when a given set of software
addresses is loaded in the internal memory 103, the memory
address monitor 107 monitors the software address being
processed and, once that internal memory address reaches a
given threshold (for example OXEQ), the memory address
monitor 107 will give an indication to the external memory
controller 109 to load the next segment from the external
memory 111 to the internal memory 103. The detection will
be done using a threshold value on the memory address. The
threshold configuration can be set by a user and may be set for
each segment or may be the same for all the segments.

The internal memory is a dual port memory so that the
updating process (i.e. loading a new segment from the exter-
nal memory) does not interrupt the processor’s instruction
fetch (i.e. the processor reading data from the internal
memory). Because the internal memory 103 is dual port, it
can be read out by the processor while, at the same time, it is
written by the external memory controller 109 with new con-
tents. This is possible when the reading address, accessed by
the processor 105, is on a higher address range in the internal
memory 103 than the writing address, accessed by the exter-
nal memory controller 109, the lower address range accessed
by the external memory controller 109 already having been
read out by the processor 105. Also, it is necessary that, while
access to the two ports is taking place in parallel, the writing
address does not overtake the reading address.

With regards to the threshold address, there will be a prob-
lem if the software code in one segment has a branch instruc-
tion (for example an instruction to move to processing a
different segment or different portion of the same segment)
which occurs before the threshold value. That way, the thresh-
old address may be missed, so that the memory address moni-

US 9,146,865 B2

11

tor 107 never gives the instruction to load the next segment.
To solve this problem, a rule in the software may be intro-
duced so that any branch instruction may be moved to after
the threshold address. In that way, the instruction will still be
given to load the next segment, as the threshold address will
be reached before the branch instruction is reached. This may
involve adding some dummy cycles so that the instruction
fetch address after the branch instruction does not overtake
the address in the internal memory 103 which is being written
to by the external memory controller 109 as it copies the next
segment from the external memory 111 to the internal
memory 103.

The segments in the external memory 111 need not be
loaded into the internal memory 103 in sequence. The soft-
ware in the internal memory 103 being processed by the
processor 105 may provide an indication of the next memory
segment to be loaded. The processor 105 is then able to give
information to the memory address monitor 107 to select the
next software segment to be loaded, by writing into a register
inside the memory address monitor 107. Thus, as the memory
address monitor 107 monitors the instruction fetch address,
when the selected threshold is reached, the memory address
monitor 107 will decide the next module to be loaded and will
give the appropriate indication to the external memory con-
troller 109.

The invention is suitable for software in which the flow can
be segmented into smaller software modules, each module
being the same size as the memory segment.

Thus, it will be seen from the above description that the
invention solves the problem of internal memory size limita-
tion by updating the internal memory dynamically whenever
required, without slowing down the processing performance.

The invention claimed is:

1. A method for updating a dual ported internal memory on
a semiconductor chip from an external memory, wherein the
external memory is external to the semiconductor chip, and
wherein the external memory comprises a data file, the
method comprising:

writing a first data portion of the data file from the external

memory to the dual ported internal memory by a
memory controller;

processing the first data portion in the dual ported internal

memory by a processor, wherein the dual ported internal
memory, the processor and the memory controller are on
the semiconductor chip; and

while the first data portion is being processed, once a

selected data item is processed, starting to write a second
data portion of the data file from the external memory to
the dual ported internal memory,

wherein writing the first data portion from the external

memory to the dual ported internal memory comprises:
reading an external data address defined by x bits for each
data item in the first data portion;
discarding y bits from the external data address thereby
writing an internal data address having (x-y) bits; and

wherein processing the first data portion comprises read-
ing, for each data item, the internal data address having
(x-y) bits,

wherein the selected data item is defined by one or more of
the internal data addresses in the set, and wherein the one
or more of the internal data addresses defining the
selected data item is set by a user.

2. A semiconductor chip for operation with an external
memory, the external memory being external to the semicon-
ductor chip, the semiconductor chip comprising:

a dual ported internal memory for storing a data portion;

20

25

35

40

45

50

55

60

12

a memory controller for writing data from the external
memo to the dual ported internal memory;

a processor for processing the data portion in the dual
ported internal memory; and

a hardware module arranged, once a selected data item in a
first data portion is processed, to instruct the memory
controller to write a second data portion from the exter-
nal memory to the dual ported internal memory, wherein
the external memory comprises a data file and wherein
the data file is arranged in a plurality of data portions,

wherein each data portion in the external memory is
defined by a set of external data addresses,

wherein data in the dual ported internal memory is defined
by a set of internal data addresses,

wherein each set of external data addresses is substantially
the same size as the set of internal data addresses,

wherein each external data address is defined by x bits and
each internal data address is defined by (x-y) bits, and

wherein the processor is arranged, when processing the
data portion in the dual ported internal memory, to try to
read, for each data item in the first data portion, an
address defined by x bits, and the dual ported internal

memory is arranged to convert the address defined by x

bits to an internal memory address defined by (x-y) bits,

by discarding the y most significant bits of the data
address,

wherein the selected data item is defined by one or more of
the internal data addresses in the set and wherein the one
or more of the internal data addresses defining the
selected data item can be set by a user.

3. A system comprising:

a first chip comprising an external memory, wherein the
external memory comprises a data file and wherein the
data file is arranged in a plurality of data portions; and

a second chip comprising
a dual ported memory for storing one data portion;

a memory controller configured to write a first data
portion from the external memory to the dual ported
memory;

aprocessor configured to process the first data portion in
the dual ported memory; and

a hardware module configured to instruct the memory
controller to write a second data portion from the
external memory to the dual ported memory once a
selected data item in a first data portion is processed,

wherein each data portion in the external memory is
defined by a set of memory data addresses,

wherein data in the dual ported memory is defined by a set
of dual ported data addresses,

wherein each set of memory data addresses is substantially
the same size as the set of dual ported data addresses,

wherein each memory data address is defined by x bits and
each dual ported data address is defined by (x-y) bits,
and

wherein the processor is arranged, when processing the
first data portion in the dual ported memory, to read, for
each data item in the first data portion, an address
defined by x bits, and the dual ported memory is
arranged to convert the address defined by x bits to an
dual ported data address defined by (x-y) bits, by dis-
carding the y most significant bits of the data address,

wherein the selected data item is defined by one or more of
the dual ported data addresses and wherein the one or
more of the dual ported data addresses defining the
selected data item is set by a user.

#* #* #* #* #*

